
EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012

Real-Time Performance Issues

for linux/linuxRT
Kukhee Kim

ICD Software, SLAC National Accelerator Laboratory

October 23, 2012

http://www.aps.anl.gov/epics/index.php
http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
2

Background

• What is linux and linuxRT

• linux: conventional linux – RHEL5

• linuxRT: ulibc libarary + RT preemptible kernel patch

• Accelerator Control System has been a territory

 of the Real-Time Operating System

• RTEMS, vxWorks, etc

• Now, migrating slowly to linux/linuxRT

• Linux becomes a player for embedded systems
- Preemptible kernel, more deterministic behavior (but, not enough yet!)

• Real-time demand on software is being pushed lower demands on

latency
- Hard real-time part can be taken care of by FPGA

• Linux has rich supporting tools and applications

• Human factor
- Finding good engineer, ….

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
3

Background Cont’d

• SLAC is just stepping into linux/linuxRT

• Linux: Camera Applications

• linuxRT:

- uTCA Platform: new LLRF and new BPM

- COM-X Platform: new MCOR

• Faced real-time performance issues, got lot of LESSONs!

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
4

Real-Time performance issues in linux/linuxRT

• Kernel space & User space

• PROS: protect system from user application

• CONS

- context switching between kernel level and user level

- additional steps to access hardware

H/W

RTOS

Driver Support

Device Support

Application

H/W

linux/linuxRT

Kernel Module

User space Driver

Driver Support

Device Support

Application

Device files Signals

Software model for RTOS

Software model for linux/linuxRT

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
5

Real-time performance issues Cont’d

• H/W register, memory access

• mmap() to user space, can handle it at user space driver

• no significant difference between RTOS and linux/linuxRT

• Interrupt handling

• Long processing chain

- Handler in kernel module -> signal to user space -> user space

handler

• More delay and more jitter

• Signaling from kernel to user space

• RT priority for user space thread and kernel thread

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
6

Lessons from the EVR

• MRF Event Receiver (EVR) Hardware + SLAC event module Software

• Has been used under RTEMS

• Just ported to linux (PC) and linuxRT (for uTCA)

• Use MRF kernel module

• user space driver and a unique software for SLAC (event module)

• SLAC software event module

• Constrained by complex legacy timing system
- event pattern

• 6 x 32 bits modifier, beam code, timeslots, ……

- pattern pipeline and 360 Hz pipeline advancing

- Beam Synchronous Acquisition

- event code and time stamping for each event code

• Challenging on linux/linuxRT
- Port existing event software module to this new architecture

• Interrupt handling & processing is very important
- >360Hz rate event interrupts + 360Hz rate data buffer interrupts

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
7

EVR interrupt handling & processing

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
8

Event interrupt & Data interrupt

• Event interrupt

• Minimum rate is 360 Hz (because of the fiducial event)

• More events increase the interrupt rates

• Fiducial event – fiducial processing
- Drive the evrTask:

pattern pipeline advancing + fiducial callback

- Cascade to the pattern record processing:

generate EPICS event + pattern diagnostics

• Data interrupt

• Deliver timing data from EVG to EVR
- Timestamp, BSA related information, event pattern

- Used for the next fiducial processing

• ~350 usec after the fiducial interrupt / 2.43 msec time margin

• Double buffer handling has been built already to prevent over-writing

due to the delayed interrupt or large jitter on the interrupt

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
9

Symptoms on linuxRT

Fiducial delay : ~ 30 usec (jitter ~ 6,090usec)

Fiducial processing: ~ 30 usec (variation ~ 6,090 usec)

Start Diff: 64usec ~ 8.9 msec (variation ~ 8,830usec)

Record Processing time: ~ 30 usec (max ~ 270 usec)

(tens hours monitoring)

Messy! Could not meet Real-Time requirements!

More Analysis

Most of the jitter comes from the epicsEventSignal. It accounts for 6 msec

jitter. Please look at the jitter for the fiducial delay.

Another jitter source is the signal between kernel module and the evrTask.

According to the variation of the start diff, we can expect the signal makes ~

2,740 jitter.

Because,

Var. Start Diff = Jitter. Fiducial Delay + Jitter. Signal Delay

It is almost close to the fiducial interval.

We can just assume, there is no chance (very low possibility) to be

preempted during the task level handler and evrTask, due to the following:

(1) Very short processing time < 10 usec

(very low possibility of expiring the scheduling timeslot)

(2) No system call, or scheduler involved :

Actually there is mutex locking but, we are sure it will not be locked at

that time.

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
10

Symptoms on linux

(tens hours monitoring)

Fiducial delay : ~ 10 usec (jitter ~ 2,280usec)

Fiducial processing: ~ 10 usec (variation ~ 2,280 usec)

Start Diff: 40usec ~ 10.4 msec (variation ~ 10,310usec)

Record Processing time: ~ 30 usec (max ~ 2,150 usec)

Really Messy!

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
11

Signal/Event Propagation

between Kernel space & User space

Using a Signal

Using ioctl

EVR kernel module is using a signal

instead of the ioctl.

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
12

Signal Handling: Asynchronous

• Kernel module generates a signal (SIGIO) to notify

 an interrupt happens to the User Space Handler

• Original Code

• The event module registers an signal handler for the SIGIO signal

• OS makes a software interrupt to switch to the signal handler

• The SIGIO is handled by the _MAIN_ thread, other threads (epics

threads) usually block every signal.

- _MAIN_ thread: no RT priority + RR Scheduling

- EPICS thread: RT priority + FIFO Scheduling

• The signal handler is processed by the _MAIN_ thread

 without RT priority!

• Usual case: few tens micro-seconds delay

• Worst case: few milli-seconds delay!

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
13

Signal Handling: Synchronous

• New Code

• Block the signal from the _MAIN_ thread

• One epics thread which has high RT priority and waits for the

signal in the infinite loop

• Synchronous: call sigwait() to wait until the signal is

received; then scheduling resumes the thread. No software

interrupt necessary.

• Only a few tens of micro-seconds delay

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
14

RT Priority for the User threads / *Changes on EPICS

#if defined(__linux__) && defined(__GNUC__)

#include <sched.h>
#include <sys/resource.h>

/* We must make sure this code is executed *before*
 * the epicsThread machinery is.
 * Not so easy since the latter eventually is fired
 * up by a c++ static constructor.
 * It is not possible in a portable way to enforce
 * an order of execution among such constructors if
 * they are defined in different compilation units.
 * Under GNU c++ we may use the 'init_priority'
 * attribute.
 * However, if this code is dynamically linked
 * against EPICS base then this doesn't work either
 * since the shared-library is initialized before
 * this code here.
 * Hence we stick a function pointer into the
 * '.preinit_array' section which is executed
 * before any shared libraries are.
 */
static void set_rtprio(int argc, char **argv, char **envp)
{
struct rlimit l;

 if (getrlimit(RLIMIT_RTPRIO, &l)) {
 perror("Warning: retrieving real-time priority limits failed");
 }
 /* If the current hard limit is unset the set to the maximum
 * otherwise leave it alone.
 */
 if (0 == l.rlim_max)
 l.rlim_max = sched_get_priority_max(SCHED_FIFO);

 l.rlim_cur = l.rlim_max;
 if (setrlimit(RLIMIT_RTPRIO, &l)) {
 perror("Warning: setting real-time priority limit failed");
 }
}

static void (*set_rtprio_hook)(int, char**, char**)
__attribute__((section(".preinit_array"),used)) = set_rtprio;

#endif

Put the code into the template

for <application>Main.cpp

-The hook checks for RT Priority

-If it is unset then, set it to

the maximum of SCHED_FIFO

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
15

RT Priority for the Kernel Thread / *Changes on EPICS

• RT preempt patch converts ISR to preemptable kernel thread

• need to give a proper RT priority for the kernel thread

• but, the tread will be created after the device open

• need someway to adjust the RT priority after iocInit()

• Implement the system escape command on the iocsh

 and execute a shell script to adjust the kernel thread

• New command to run the shell script

• Example of the script

system("/bin/su root -c `pwd`/rtPrioritySetup.cmd")

/usr/bin/chrt -pf 95 `/bin/ps -Leo pid,tid,rtprio,comm | /usr/bin/awk '/mrfevr/{printf $1}‘`

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
16

RT priority for user threads and kernel threads

 $ ps -Leo pid,ppid,tid,rtprio,stime,time,comm,wchan
 PID PPID TID RTPRIO STIME TIME COMMAND WCHAN
 1019 1 1019 - 14:58 00:00:00 screen poll_schedule_timeout
 1020 1019 1020 - 14:58 00:00:00 LLRFControl n_tty_read
 1020 1019 1022 10 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1024 94 14:58 00:00:39 LLRFControl sigtimedwait
 1020 1019 1025 10 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1026 69 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1027 58 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1028 63 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1029 70 14:58 00:00:01 LLRFControl futex_wait_queue_me
 1020 1019 1030 50 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1031 90 14:58 00:00:08 LLRFControl futex_wait_queue_me
 1020 1019 1032 79 14:58 00:00:09 LLRFControl futex_wait_queue_me
 1020 1019 1033 59 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1034 69 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1035 59 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1036 60 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1037 61 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1038 62 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1039 63 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1040 64 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1041 65 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1042 16 14:58 00:00:00 LLRFControl inet_csk_accept
 1020 1019 1043 14 14:58 00:00:00 LLRFControl hrtimer_nanosleep
 1020 1019 1044 12 14:58 00:00:00 LLRFControl skb_recv_datagram
 1020 1019 1045 10 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1046 51 14:58 00:00:01 LLRFControl futex_wait_queue_me
 1020 1019 1047 53 14:58 00:00:00 LLRFControl skb_recv_datagram
 1020 1019 1049 51 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1052 18 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1053 20 14:58 00:00:00 LLRFControl sk_wait_data
 1020 1019 1054 18 14:58 00:00:00 LLRFControl futex_wait_queue_me
 1020 1019 1055 20 14:58 00:00:00 LLRFControl sk_wait_data
 1023 2 1023 95 14:58 00:00:13 irq/19-mrfevr irq_thread

irqHandler Thread

evrTask

evrRecord

Adjust RT Priority / Scheduling for Kernel Thread @ linuxRT platform

with chrt -pf <prio> <pid>

Kernel Thread

to handle the IRQ from EVR

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
17

Misc… / *Changes on EPICS

• Memory lock to prevent swapping

• Put the following code into the main()

• EPICS POSIX OSI does not support recursive mutex

• The restriction may come from the old version of the Solaris

 #if _POSIX_MEMLOCK > 0
 if(mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
 printf("Fatal error: memory locking fail\n");
 return -1;
 }
 #endif

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
18

Result : Significant Improvement on linuxRT

LinuxRT: Switch to synchronous signal handling + adjust the kernel thread priority

before after

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
19

RT Performance Measurement Tool

• Develop RT Performance Measurement Tool

• measure accurate execution time (nano-second resolution), and

worst case latency

• put probes in the code and enable/disable at runtime

• very light weight / almost negligible perturbation on the execution

• now it works as epics driver support

• device support will be available soon

epics> dbior drvPerfMeasure 3
Driver: drvPerfMeasure
Estimated Clock Speed: 1500.200532 MHz
Driver has 9 measurement point(s) now...
--
 Node name Enb Counter Time(usec) Minimum Maximum Description
--
 MAINLOOP 1 75120 1970.36458590 1715.28468702 2565.31704789 main thread loop time
 DAQ 1 75158 739.90508357 641.91418378 1056.72872805 get all DAQ data in the main thread
 PHCTRL 1 75157 419.01398286 411.12503752 494.66986857 phase control block in the main thread
 PHCTRLDATA 1 75157 417.50818417 409.73922278 486.73892885 +data get for phase control block in the main thread
 NETDAQ 1 75179 2.83762064 2.55565834 18.90347283 +just net DAQ getting time
 RFDEMO 1 75157 413.68669505 405.80374891 466.58762283 +RF demodulation calc time
 PHCTRLCALC 1 75179 0.46793744 0.30595910 11.60844809 +calculation for the phase control in the main thread
 WFDIAG 1 75175 102.58028625 16.16783855 287.57755433 diag. for waveform in the main thread
 OTHDIAG 1 75179 23.05491783 20.62524265 116.01249052 diag. for others in the main thread
--

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
20

Summary

• Generic Real-time Performance Issues for linux/linuxRT

• Kernel space and User Space

• Interrupt Handling, Signaling to the User Space

• RT priorities for kernel thread and user thread

• Improvement of EPICS base for linux/linuxRT platform

• Provide RT priority initialization hook for the user thread (epicsThread)

• Provide *system escape* to adjust the RT priority for the kernel thread.

It can be utilized for others.

• Memory lock to prevent swapping

• Recursive Mutex for POSIX OSI in the EPICS

• Develop Real-Time Performance Measurement Tool

• Acknowledgement

• Special Thank you to Till Straumann and Stephanie Allison

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012
21

Lessons from the work

• Put enough DIAGNOSTICS

 to detect, to visualize

• “Pay for Diag.”

 It is inexpensive compared to the “Payment for FAIL”

Now, we know the exact delay

through H/W -> Kernel -> User ISR

:-)

http://www.aps.anl.gov/epics/index.php

EPICS Collaboration Meeting Fall 2012 @ PAL

October 22 ~ 26, 2012

Thank You!

http://www.aps.anl.gov/epics/index.php
http://www.aps.anl.gov/epics/index.php

